Category Archives: 1977

Letters: Shamcher Beorse and Carol Sill, 1974-1977

Now released!

This book of letters reveals an intimate and unique relationship between a teacher and pupil on the Sufi path.

A contemporary western mystic, Shamcher Beorse had been a pupil of the great Sufi, Pir-o-Murshid Inayat Khan in the 1920’s. Carol Sill was a young beginner on the spiritual path, grieving the sudden death of her only son. Fly along as Shamcher intuitively guides her through the winding routes of Love’s progress, growth and development.

With Shamcher by her side she opened to a world that had been previously closed to her. Share her discoveries as a dazzled and astonished neophyte, learning how to live without her body, and to proceed beyond eyes, ears and even beyond mind.

This process of inner development is all documented here – in real time, through the original correspondence, for Shamcher mailed all Carol’s letters back to her, with copies of his own, asking her to publish them.

Read this book as it was written: as an unfolding correspondence of the soul.

Find out more at the website for the book, or see it on Amazon. Also available on Kindle.


Leave a comment

Filed under 1974, 1975, 1976, 1977, Inayat Khan, Letters Book, Shamcher, Sufi

OTEC History

(OTEC means Ocean Thermal Energy Conversion)

Ocean Thermal Difference, the difference between surface and deeper layers, as a source of power, has been recognized for more than a century. In 1881 an American engineer, Campbell, two Italians, Dornig and Boggia and a French physicist, D’Arsonval proposed a closed cycle Ocean Thermal device. The warm surface water would heat and cause evaporation of a “working fluid” (alternative fluids were suggested) which would pass through a turbine, thereafter being condensed by cold water pumped up from deep layers and again fed into the evaporator. The first to build practical plants was a pupil of D’Arsonval, the French engineer George Claude, member of L’Academie des Sciences, of the French Society of Civil Engineers. He won the fiftieth anniversary medal of the American Society of Mechanical Engineers. He chose the “open cycle system” in which the ocean surface water itself evaporates and drives the turbine,and rejected the “closed cycle”, of which he said in a talk to American engineers 22 October 1930(1):

“Manifestly, such a solution is burdened by a number of inconveniences, one of them being the extra equipment for and cost of the working fluid and another the necessity of transmitting enormous quantities of heat through the inevitably dirty walls of immense boilers… The sea water itself contains all that is needed for the direct utilization of such small temperature differences.”

Claude ran a small experimental device before fellow-members of l’Academie des Sciences in Paris, then built a larger plant at OUGREE in Belgium, which, in his words, “Made my virulent opponents hold their tongues.” His one-meter diameter turbine generated 60 Kilowatts at 5000 rounds per minute with a total ocean thermal difference of 20°C. This proved the thermodynamic viability. “It remained to be seen how the plant would function in the ocean, how pumping cold water from deeper layers would influence neighboring layers and whether foaming would drastically decrease efficiency or break the turbine.”

Claude moved his Belgian plant to Cuba. A two feet diameter pipeline would have been sufficient to supply his condenser,with the proper amount of water, but would have caused the cold water to be warmed before arriving at the condenser and would have incurred intolerable friction losses. A pipeline of two-meter diameter was built — and lost in a storm. A second pipeline was also lost. A third pipeline was built and successfully laid. The plant ran for eleven days, producing 22 KW on a turbine much too small for the other components of the plant, but Claude was operating on his own money and that of a few friends, and could not afford a new turbine. The basic function was nevertheless proven and, in the opinion of these resourceful enterprisers, should have been followed by prototype and commercial plants.

In 1931 a French Maritime company built a pilot plant for shipboard use at Le Havre, described by H. Brillie in GENIE CIVIL for 21 June 1931 (2). This plant, using ship engine waste water as warm water source and ocean surface water as cold water source produced fresh water with as little as 1-2 parts per million salt and a power expenditure of only a fraction of conventional plants, according to the report. Gossipers claim the plant was killed by people who wanted to sell more fuels to ships.

In 1941 the French Government became involved and in 1942 ENERGIE DES MERS was formed, a semi-official company for researching and building OTEC plants (3,4). In French laboratories and on a chosen site at Abidjan in West Africa research was conducted, for example on the effect on neighboring layers when huge amounts of cold water was removed by pumping. Only the closest layers were found to be involved. Mindful that Claude had lost two pipelines, the manufacturing and laying of the cold water pipeline were carefully planned and carried out. This pipeline was considered the only new and unproven component in the plant and therefore given major attention. The line was left in place for six months for study of corrosion/biofouling. The area between low and high tide was found particularly vulnerable. For current OTEC ships, with the cold water pipeline entirely under water, this would be irrelevant. In laboratories in Dakar and in France proper research was conducted on general evaporator and condenser problems, including air-and-gas removal from sea water under evaporation. An entire plant was designed but never built.

In 1947 and 1948 the undersigned studied the French work, returned to the States and became involved with the University of California and its newly established Sea Water Conversion Laboratory. In 1951 Professor Everett D. Howe, founder and first director of the Sea Water Conversion Laboratory, obtained State funds, later Federal funds, from the “Saline Water Office” that had been established when Dr. James Hofman of the National Bureau of Standards demonstrated in Congress two small thermal machines built in my presence on the pattern of the French.

The University of California built and tested three plants, all open cycle, since the University wanted desalination, primarily. In the open cycle, desalination is achieved with no additional cost. A laboratory plant was built and tested by Dr. Lev Akonjanoff. Its main feature was a two-quarts pyrex glass kettle. This vessel is kept in a stove at constant temperature, to avoid losses by condensation on the glass wall. Tests were made with a) batch distillation with constant temperature and pressure, b) batch distillation with constant temperature and varying pressure, e) flow-distillation with constant temperature and pressure, d) flow-distillation with constant temperature and varying pressure. This laboratory-sized plant was built and tested in the Hesse Hall of the Berkeley Campus. At the Sea Water Conversion Laboratory of the Richmond Field Station was simultaneously built the so-called ‘first low-temperature difference plant’ consistlng of an already available 4.5 foot-long and 30 inches diameter cylindrical evaporator plus condenser, pumps etc. It was scheduled to produce 2,000 gallons desalted water per day and no power. After this plant had been tested for a variety of possible conditions, our ‘second low temperature difference plant’ was designed and built. Funds had now been made available for suitable hardware. This plant was scheduled to produce 10,000 gallons per day desalted water plus as much power as our available General Electric turbine would seem willing to offer. This turbine had been used in an aircraft air conditioning unit. The evaporator had been supplied with three windows and inside lights, so that the flash evaporation procedure could be observed. The sea water was seen to explode in a myriad of drops the moment it entered the evaporator. The prior idea of drip-trays, over which water was supposed to flow in sheet-like formations, was proven invalid. This again may be one reason why our yields often were higher than formulas predicted.

Dr. Akobjanoff(7) and Mr. Beorse (9) conducted independent studies of evaporation rates related to then existing formulae. Yields in the University
plants varied from 2 to 189% of predicted values. Dr. Langmuir, co-author of the Langmuir-Knutsen formula, saw the reason for this in that essential factors had not been included in the formulae, during a discussion with Mr. Beorse in 1955.

Tables, showing yields of desalted water and power produced at the University plants, are available at the University and/or Sea Water Conversion Laboratory. One table, showing cost, estimated or confirmed, of various desalting methods, indicates that desalting cost for a Low Thermal Difference Plant is lower than for all other methods and lower than the then-goal for municipal water (85 dollars versus 125 dollar per acre foot) but higher than the irrigation goal (40 dollars). (5,6,7,8,9)

Commercial Design.

On the basis of this testing of three plants, the University designed a desalting plant for the canyon near La Jolla and the Scripps Oceanographic Institution. It was scheduled to produce five million gallons fresh water per day. A number of large private firms, located in California or with branch offices in California assisted in this design. Particularly helpful was the San Francisco Branch Office of the Westinghouse Corporation.

This plant would have no turbine. The total temperature difference in the winter was 16°F, not enough for power production but enough to desalt water at a lower cost than any then or later developed system, since this small thermal difference provided distillation under vacuum. Additional energy for pumping etc., would come (1955 prices) to 24 cents per 1000 gallons, while fuel-fired plants require from three to four times as much energy. With the addition of maintenance cost, total cost comes to 28 cents per 100 gallons, not including amortization and interest, which changes from site to site. A smaller plant would mean a greater relative cost for the cold water pipeline and for maintenance, so the total cost would be higher. Firm bids were obtained for all components, including two million dollars for manufacturing and laying the cold water pipeline. This one job was upped to three million in our estimate. We tried to be equally conservative for other components. The estimated cost of the entire plant was six million dollars. People not familiar with our research and estimate preferred a one and half billion dollar Feather River project — valid, in a sense, at least, while water supply in Northern California was ample. It isn’t any more. The subject plants may still be built, all over Southern California.

The University of California and Energie des Mers

Following Mr. Beorse’s study at Energie des Mers in France in the late Forties, the General Director of Energie des Mers, Andre Nizery, visited the University of California and gave a seminar at the Berkeley Campus in March 1954 (10). Andre Nizery was also deputy Director of the huge semipublic corporation “Electricite de France” which supplies the French with electricity and other forms of power. Professor Everett D. Howe of the University, along with David Jenkins, then-director of the Saline Water Office of the US Department of the Interior visited Energie des Mers in Paris and Abidjan. Mr. Beorse again visited Energíe des Mers in 1957,1959, 1963 and 1973, this last time on occasion of the passing of M. Christian Beau, who had been General Director of Energie des Mers after Andre Nizery’s death. M. Beau had also been head of France’s public works.

All personnel of Energie des Mers were convinced that they had the obvious solution to the world’s energy problem. Their research had confirmed their brightest hopes. The winds of politics in France favored nuclear energy.

Throughout the years until today the University of California continued specific research on heat transfer, heat exchangers, de-aeration, evaporator characteristics, preventing carry-over of water droplets into the steam flow, scaling, corrosion, biofouling. In June 1957 Professor E.D. Howe reported to ASME (11).

From 1960 Hilbert and James Anderson, a father-son engineering team, took up a serious study of a closed cycle plant and actually built a small sample. In the seventies, with the soaring oil prices, the National Science Foundation took up the matter, asked for studies,, and received voluminous reports, first from the University of Massachusetts at Amherst, principal investigator Professor William E. Heronemus, a former Navy Captain who had been in charge of vast shipbuilding efforts. In rapid succession followed the Johns Hopkins University’s Applied Physics
laboratory, the Carnegie-Mellon University, the Universities of Texas, Hawaii, New Orleans, Florida — and substantial industrial firms: Lockheed, Bechtel, TRW, and of course the Andersons’ Sea Solar Power, Hydronautics, Batelle, Allied Chemical Corporation — thousands upon thousands of pages proosing a multitude of types and all of them emphasizing the immediate readiness of this technology and the wholly benign ecological effects. Cost estimates vary from $700 and up per Kilowatt built and of course the fuel is free. If only two percent of the power available in the Ocean Thermal difference were utilized we would have many times as much energy as the world now needs.

Bryn Beorse, University of California 19 September 1977

(Note: footnotes for this document were not found at this time. However, they will be added later should another version of this be found that includes the footnotes.)

(Click here for a random post from somewhere else in this blog.)

Leave a comment

Filed under 1975-1980, 1977, Energy, OTEC, Shamcher


from correspondence

5 January, 1977
Dear ___,
A beautiful thick and heavy card with pearls of wisdom came through my door, with wishes for Christmas and the new year. It was most necessary to keep me going, to keep a lazy body perking up.
Time is running away from me, no cohesion in my life or lifestyle any longer and I really do not care. Who needs a lifestyle? All styles are good.
Good wishes and thoughts come to me from old and new friends anyway. What could be better? A sufi recently told me he and his school were seeking their identities. In so seeking, they rejected an applicant. He would have jeopardized their seeking their identity they said. Now, would he? and if so, so what? What is identity? an illusion. Good to get rid of. But no, at a certain stage, for some, this seeking and finding an identity seems so important. Maybe I should reread, re-estimate, but anyway, for me there is no such thing as identity, nor seeking it. seems it is like limiting yourself, turning yourself into a pat ego. There is a stream of which I am gently and increasingly conscious. It is beyond identity. I try to be in it, part of it. Whatever it is.
Forgive my many words. So useless, aren’t they? but then, what is useful?
Happy new years, more and more of them. It rains here. I made it.

(Click here for a random post from somewhere else in this blog.)

Leave a comment

Filed under 1975-1980, 1977, Shamcher, Sufi

The Second Teacher?

Pir-O-Murshid Hazrat lnayat Khan came to Oslo and met a seeking soul who had travelled all over India and many other countries in search of a teacher. When the bond and trust were established it seemed a matter of course to this pupil that there was only one teacher in the whole wide world–for him at least. Joining or even listening seriously to anyone else seemed impossible, ridiculous, devastating. He moved from Oslo to Los Angeles, heard of Yogananda, remembered that Yoga was his first love and study, but felt no desire whatever to even listen to Yogananda now. After Yogananda’s passing he studied his papers to understand the many Yogananda disciples–with the blessing of his teacher, he felt.

However, this pupil had a weakness, or at least a trend of thought: wherever he travelled in the world he looked over the landscape–would there be a cave or spot where he could retreat in complete silence–meditation, maybe for the rest of his life? He knew, not by word of mouth but by feel, that Hazrat Inayat Khan would hardly approve of that, but, well, he just looked.

It was in 1923 he first met Hazrat Inayat Khan in Oslo. ln 1959 he was in India, followed the pilgrim trail toward Badrinath. At the last station, Joshimath, he rushed up a mountain trail, along a foaming stream. Its water became more and more refreshing the higher he mounted. At last he felt he was flying. Perfect! … and there, before his eyes, was the kind of cave in which hermits are pictured, right into a steep wall of rock. How could one get in? Was this for him? Sit there for the rest of his life, just meditating? Perhaps, not eating — not needing to?

Then–LO! There was an upper entrance, a shaft down into the cave. Eagerly he lowered himself down through the “chimney.” At the bottom he felt around. It was dark. Dld he feel some furry thing?

BRRROOOM! Soft. What was that? He felt the fur again. This time–BRRROOOM!–thunderous! “I better get out of here,” he thought, and clambered back out. Back to Sufi meetings, universal worship, engineering work on energy, insured full employment, the tasks life had given him.

So, a Himalayan bear was his second teacher. Second? It hadn’t eaten him, not even sunk its claws into his flesh. Why so gentle? Maybe the Himalayan bear wasn’t really a–second–teacher. Could its inspiration and behavior have come from the first and only?

by Shamcher (in The Message, December 1977)

(Click here for a random post from somewhere else in this blog.)

Leave a comment

Filed under 1975-1980, 1977, Inayat Khan, Sufi